Name and logo
The word Bluetooth is an anglicised version of the Scandinavian Blåtand/Blåtann, the epithet of the tenth-century king Harald I of Denmark and parts of Norway who united dissonant Danish tribes into a single kingdom. The implication is that Bluetooth does the same with communications protocols, uniting them into one universal standard.
The Bluetooth logo is a bind rune merging the Younger Futhark runes Hagall and Bjarkan, Harald's initials.
Implementation
Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each) in the range 2402-2480 MHz. This range is in the globally unlicensed Industrial, Scientific and Medical (ISM) 2.4 GHz short-range radio frequency band.
Originally Gaussian frequency-shift keying (GFSK) modulation was the only modulation scheme available; subsequently, since the introduction of Bluetooth 2.0+EDR, π/4-DQPSK and 8DPSK modulation may also be used between compatible devices. Devices functioning with GFSK are said to be operating in basic rate (BR) mode where a gross data rate of 1 Mbit/s is possible. The term enhanced data rate (EDR) is used to describe π/4-DPSK and 8DPSK schemes, each giving 2 and 3 Mbit/s respectively. The combination of these (BR and EDR) modes in Bluetooth radio technology is classified as a "BR/EDR radio".
Bluetooth is a packet-based protocol with a master-slave structure. One master may communicate with up to 7 slaves in a piconet; all devices share the master's clock. Packet exchange is based on the basic clock, defined by the master, which ticks at 312.5 µs intervals. Two clock ticks make up a slot of 625 µs; two slots make up a slot pair of 1250 µs. In the simple case of single-slot packets the master transmits in even slots and receives in odd slots; the slave, conversely, receives in even slots and transmits in odd slots. Packets may be 1, 3 or 5 slots long but in all cases the master transmit will begin in even slots and the slave transmit in odd slots.
Bluetooth provides a secure way to connect and exchange information between devices such as faxes, mobile phones, telephones, laptops, personal computers, printers, Global Positioning System (GPS) receivers, digital cameras, and video game consoles.
The Bluetooth specifications are developed and licensed by the Bluetooth Special Interest Group (SIG). The Bluetooth SIG consists of more than 13,000 companies in the areas of telecommunication, computing, networking, and consumer electronics.
To be marketed as a Bluetooth device, it must be qualified to standards defined by the SIG.
Communication and connection
A master Bluetooth device can communicate with up to seven devices in a piconet. The devices can switch roles, by agreement, and the slave can become the master at any time.
At any given time, data can be transferred between the master and one other device (except for the little-used broadcast mode). The master chooses which slave device to address; typically, it switches rapidly from one device to another in a round-robin fashion.
The Bluetooth Core Specification provides for the connection of two or more piconets to form a scatternet, in which certain devices serve as bridges, simultaneously playing the master role in one piconet and the slave role in another.
Many USB Bluetooth adapters or "dongles" are available, some of which also include an IrDA adapter. Older (pre-2003) Bluetooth dongles, however, have limited capabilities, offering only the Bluetooth Enumerator and a less-powerful Bluetooth Radio incarnation. Such devices can link computers with Bluetooth with a distance of 100 meters, but they do not offer much in the way of services that modern adapters do.
Uses
Bluetooth is a standard wire-replacement communications protocol primarily designed for low power consumption, with a short range (power-class-dependent: 100 m, 10 m and 1 m, but ranges vary in practice; see table below) based on low-cost transceiver microchips in each device. Because the devices use a radio (broadcast) communications system, they do not have to be in line of sight of each other.
In most cases the effective range of class 2 devices is extended if they connect to a class 1 transceiver, compared to a pure class 2 network. This is accomplished by the higher sensitivity and transmission power of Class 1 devices.
While the Bluetooth Core Specification does mandate minimums for range, the range of the technology is application specific and is not limited. Manufacturers may tune their implementations to the range needed to support individual use cases.
Bluetooth profiles
To use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth profiles, which are definitions of possible applications and specify general behaviors that Bluetooth enabled devices use to communicate with other Bluetooth devices. There are a wide range of Bluetooth profiles that describe many different types of applications or use cases for devices.
List of Applications
- A typical Bluetooth mobile phone headset.
- Wireless control of and communication between a mobile phone and a handsfree headset. This was one of the earliest applications to become popular.
- Wireless networking between PCs in a confined space and where little bandwidth is required.
- Wireless communication with PC input and output devices, the most common being the mouse, keyboard and printer.
- Transfer of files, contact details, calendar appointments, and reminders between devices with OBEX.
- Replacement of traditional wired serial communications in test equipment, GPS receivers, medical equipment, bar code scanners, and traffic control devices.
- For controls where infrared was traditionally used.
- For low bandwidth applications where higher USB bandwidth is not required and cable-free connection desired.
- Sending small advertisements from Bluetooth-enabled advertising hoardings to other, discoverable, Bluetooth devices.
- Wireless bridge between two Industrial Ethernet (e.g., PROFINET) networks.
- Three seventh-generation game consoles, Nintendo's Wii and Sony's PlayStation 3 and PSP Go, use Bluetooth for their respective wireless controllers.
- Dial-up internet access on personal computers or PDAs using a data-capable mobile phone as a wireless modem like Novatel mifi.
- Short range transmission of health sensor data from medical devices to mobile phone, set-top box or dedicated telehealth devices.
- Allowing a DECT phone to ring and answer calls on behalf of a nearby cell phone
- Real-time location systems (RTLS), are used to track and identify the location of objects in real-time using “Nodes” or “tags” attached to, or embedded in the objects tracked, and “Readers” that receive and process the wireless signals from these tags to determine their locations
- Tracking livestock and detainees. According to a leaked diplomatic cable, King Abdullah of Saudi Arabia suggested "implanting detainees with an electronic chip containing information about them and allowing their movements to be tracked with Bluetooth. This was done with horses and falcons, the King said."