Most cloud computing infrastructures consist of services delivered through common centers and built on servers. Clouds often appear as single points of access for consumers' computing needs. Commercial offerings are generally expected to meet quality of service (QoS) requirements of customers, and typically include service level agreements (SLAs). The major cloud service providers include Amazon, Rackspace Cloud, Salesforce, Microsoft and Google. Some of the larger IT firms that are actively involved in cloud computing are Fujitsu, Dell, Red Hat, Hewlett Packard, IBM, VMware and NetApp.
Comparisons
Cloud computing derives characteristics from, but should not be confused with:
- Autonomic computing — "computer systems capable of self-management"
- Client–server model – client–server computing refers broadly to any distributed application that distinguishes between service providers (servers) and service requesters (clients)
- Grid computing — "a form of distributed computing and parallel computing, whereby a 'super and virtual computer' is composed of a cluster of networked, loosely coupled computers acting in concert to perform very large tasks"
- Mainframe computer — powerful computers used mainly by large organizations for critical applications, typically bulk data-processing such as census, industry and consumer statistics, enterprise resource planning, and financial transaction processing.
- Utility computing — the "packaging of computing resources, such as computation and storage, as a metered service similar to a traditional public utility, such as electricity";
- Peer-to-peer – distributed architecture without the need for central coordination, with participants being at the same time both suppliers and consumers of resources (in contrast to the traditional client–server model)
- Service-oriented computing – Cloud computing provides services related to computing while, in a reciprocal manner, service-oriented computing consists of the computing techniques that operate on software-as-a-service.
Characteristics
The fundamental concept of cloud computing is that the computing is "in the cloud" i.e. that the processing (and the related data) is not in a specified, known or the same place(s). This is in opposition to where the processing takes place in one or more specific servers that are known. All the other concepts mentioned are supplementary or complementary to this concept.
Generally, cloud computing customers do not own the physical infrastructure, instead avoiding capital expenditure by renting usage from a third-party provider. They consume resources as a service and pay only for resources that they use. Many cloud-computing offerings employ the utility computing model, which is analogous to how traditional utility services (such as electricity) are consumed, whereas others bill on a subscription basis. Sharing "perishable and intangible" computing power among multiple tenants can improve utilization rates, as servers are not unnecessarily left idle (which can reduce costs significantly while increasing the speed of application development). A side-effect of this approach is that overall computer usage rises dramatically, as customers do not have to engineer for peak load limits. In addition, "increased high-speed bandwidth" makes it possible to receive the same. The cloud is becoming increasingly associated with small and medium enterprises (SMEs) as in many cases they cannot justify or afford the large capital expenditure of traditional IT. SMEs also typically have less existing infrastructure, less bureaucracy, more flexibility, and smaller capital budgets for purchasing in-house technology. Similarly, SMEs in emerging markets are typically unburdened by established legacy infrastructures, thus reducing the complexity of deploying cloud solutions.
Economics
Cloud computing users avoid capital expenditure (CapEx) on hardware, software, and services when they pay a provider only for what they use. Consumption is usually billed on a utility (resources consumed, like electricity) or subscription (time-based, like a newspaper) basis with little or no upfront cost. Other benefits of this approach are low barriers to entry, shared infrastructure and costs, low management overhead, and immediate access to a broad range of applications. In general, users can terminate the contract at any time (thereby avoiding return on investment risk and uncertainty), and the services are often covered by service level agreements (SLAs) with financial penalties.
According to Nicholas Carr, the strategic importance of information technology is diminishing as it becomes standardized and less expensive. He argues that the cloud computing paradigm shift is similar to the displacement of frozen water trade by electricity generators early in the 20th century.
Although companies might be able to save on upfront capital expenditures, they might not save much and might actually pay more for operating expenses. In situations where the capital expense would be relatively small, or where the organization has more flexibility in their capital budget than their operating budget, the cloud model might not make great fiscal sense. Other factors having an impact on the scale of potential cost savings include the efficiency of a company's data center as compared to the cloud vendor's, the company's existing operating costs, the level of adoption of cloud computing, and the type of functionality being hosted in the cloud.
Among the items that some cloud hosts charge for are instances (often with extra charges for high-memory or high-CPU instances), data transfer in and out, storage (measured by the GB-month), I/O requests, PUT requests and GET requests, IP addresses, and load balancing. In some cases, users can bid on instances, with pricing dependent on demand for available instances.
Architecture
Cloud computing sample architecture
Cloud architecture, the systems architecture of the software systems involved in the delivery of cloud computing, typically involves multiple cloud components communicating with each other over application programming interfaces, usually web services. This resembles the Unix philosophy of having multiple programs each doing one thing well and working together over universal interfaces. Complexity is controlled and the resulting systems are more manageable than their monolithic counterparts.
The two most significant components of cloud computing architecture are known as the front end and the back end. The front end is the part seen by the client, i.e. the computer user. This includes the client’s network (or computer) and the applications used to access the cloud via a user interface such as a web browser. The back end of the cloud computing architecture is the ‘cloud’ itself, comprising various computers, servers and data storage devices.
History
The underlying concept of cloud computing dates back to the 1960s, when John McCarthy opined that "computation may someday be organized as a public utility." Almost all the modern-day characteristics of cloud computing (elastic provision, provided as a utility, online, illusion of infinite supply), the comparison to the electricity industry and the use of public, private, government and community forms was thoroughly explored in Douglas Parkhill's 1966 book, The Challenge of the Computer Utility.
The actual term "cloud" borrows from telephony in that telecommunications companies, who until the 1990s primarily offered dedicated point-to-point data circuits, began offering Virtual Private Network (VPN) services with comparable quality of service but at a much lower cost. By switching traffic to balance utilization as they saw fit, they were able to utilize their overall network bandwidth more effectively. The cloud symbol was used to denote the demarcation point between that which was the responsibility of the provider from that of the user. Cloud computing extends this boundary to cover servers as well as the network infrastructure. The first scholarly use of the term “cloud computing” was in a 1997 lecture by Ramnath Chellappa.
Amazon played a key role in the development of cloud computing by modernizing their data centers after the dot-com bubble, which, like most computer networks, were using as little as 10% of their capacity at any one time, just to leave room for occasional spikes. Having found that the new cloud architecture resulted in significant internal efficiency improvements whereby small, fast-moving "two-pizza teams" could add new features faster and more easily, Amazon initiated a new product development effort to provide cloud computing to external customers, and launched Amazon Web Service (AWS) on a utility computing basis in 2006.
In 2007, Google, IBM and a number of universities embarked on a large scale cloud computing research project. In early 2008, Eucalyptus became the first open source AWS API compatible platform for deploying private clouds. By mid-2008, Gartner saw an opportunity for cloud computing "to shape the relationship among consumers of IT services, those who use IT services and those who sell them" and observed that "organisations are switching from company-owned hardware and software assets to per-use service-based models" so that the "projected shift to cloud computing ... will result in dramatic growth in IT products in some areas and significant reductions in other areas."