Pages

Tuesday, September 23, 2008

Steganography

Steganography is the art and science of writing hidden messages in such a way that no one, apart from the sender and intended recipient, suspects the existence of the message, a form of security through obscurity. The word steganography is of Greek origin and means "concealed writing" from the Greek words steganos (στεγανός) meaning "covered or protected", and graphein (γράφειν) meaning "to write". The first recorded use of the term was in 1499 by Johannes Trithemius in his Steganographia, a treatise on cryptography and steganography disguised as a book on magic. Generally, messages will appear to be something else: images, articles, shopping lists, or some other covertext and, classically, the hidden message may be in invisible ink between the visible lines of a private letter.
The advantage of steganography, over cryptography alone, is that messages do not attract attention to themselves. Plainly visible encrypted messages—no matter how unbreakable—will arouse suspicion, and may in themselves be incriminating in countries where encryption is illegal. Therefore, whereas cryptography protects the contents of a message, steganography can be said to protect both messages and communicating parties.
Steganography includes the concealment of information within computer files. In digital steganography, electronic communications may include steganographic coding inside of a transport layer, such as a document file, image file, program or protocol. Media files are ideal for steganographic transmission because of their large size. As a simple example, a sender might start with an innocuous image file and adjust the color of every 100th pixel to correspond to a letter in the alphabet, a change so subtle that someone not specifically looking for it is unlikely to notice it.

Ancient Steganography
The first recorded uses of steganography can be traced back to 440 BC when Herodotus mentions two examples of steganography in The Histories of Herodotus. Demaratus sent a warning about a forthcoming attack to Greece by writing it directly on the wooden backing of a wax tablet before applying its beeswax surface. Wax tablets were in common use then as reusable writing surfaces, sometimes used for shorthand. Another ancient example is that of Histiaeus, who shaved the head of his most trusted slave and tattooed a message on it. After his hair had grown the message was hidden. The purpose was to instigate a revolt against the Persians.

Additional Terminology
In general, terminology analogous to (and consistent with) more conventional radio and communications technology is used; however, a brief description of some terms which show up in software specifically, and are easily confused, is appropriate. These are most relevant to digital steganographic systems.
The payload is the data to be covertly communicated. The carrier is the signal, stream, or data file into which the payload is hidden; which differs from the "channel" (typically used to refer to the type of input, such as "a JPEG image"). The resulting signal, stream, or data file which has the payload encoded into it is sometimes referred to as the package, stego file, or covert message. The percentage of bytes, samples, or other signal elements which are modified to encode the payload is referred to as the encoding density and is typically expressed as a number between 0 and 1.
In a set of files, those files considered likely to contain a payload are called suspects. If the suspect was identified through some type of statistical analysis, it might be referred to as a candidate.

Countermeasures and Detection
Detection of physical steganography requires careful physical examination, including the use of magnification, developer chemicals and ultraviolet light. It is a time-consuming process with obvious resource implications, even in countries where large numbers of people are employed to spy on their fellow nationals. However, it is feasible to screen mail of certain suspected individuals or institutions, such as prisons or prisoner-of-war (POW) camps. During World War II, a technology used to ease monitoring of POW mail was specially treated paper that would reveal invisible ink. An article in the June 24, 1948 issue of Paper Trade Journal by the Technical Director of the United States Government Printing Office, Morris S. Kantrowitz, describes in general terms the development of this paper, three prototypes of which were named Sensicoat, Anilith, and Coatalith paper. These were for the manufacture of post cards and stationery to be given to German prisoners of war in the US and Canada. If POWs tried to write a hidden message the special paper would render it visible. At least two US patents were granted related to this technology, one to Mr. Kantrowitz, No. 2,515,232, "Water-Detecting paper and Water-Detecting Coating Composition Therefor", patented July 18, 1950, and an earlier one, "Moisture-Sensitive Paper and the Manufacture Thereof", No. 2,445,586, patented July 20, 1948. A similar strategy is to issue prisoners with writing paper ruled with a water-soluble ink that "runs" when in contact with a water-based invisible ink.
In computing, detection of steganographically encoded packages is called steganalysis. The simplest method to detect modified files, however, is to compare them to known originals. For example, to detect information being moved through the graphics on a website, an analyst can maintain known-clean copies of these materials and compare them against the current contents of the site. The differences, assuming the carrier is the same, will compose the payload. In general, using extremely high compression rate makes steganography difficult, but not impossible. While compression errors provide a hiding place for data, high compression reduces the amount of data available to hide the payload in, raising the encoding density and facilitating easier detection (in the extreme case, even by casual observation).