Pages

Tuesday, January 12, 2010

WiMAX

WiMAX (Worldwide Interoperability for Microwave Access) is a telecommunications protocol that provides fixed and fully mobile Internet access. The current WiMAX revision provides up to 40 Mbit/s with the IEEE 802.16m update expected to offer up to 1 Gbit/s fixed speeds. The name "WiMAX" was created by the WiMAX Forum, which was formed in June 2001 to promote conformity and interoperability of the standard. The forum describes WiMAX as "a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL".

Terminology
WiMAX refers to interoperable implementations of the IEEE 802.16 wireless-networks standard (ratified by the WiMAX Forum), in similarity with Wi-Fi, which refers to interoperable implementations of the IEEE 802.11 Wireless LAN standard (ratified by the Wi-Fi Alliance). The WiMAX Forum certification allows vendors to sell their equipment as WiMAX (Fixed or Mobile) certified, thus ensuring a level of interoperability with other certified products, as long as they fit the same profile.
The IEEE 802.16 standard forms the basis of 'WiMAX' and is sometimes referred to colloquially as "WiMAX", "Fixed WiMAX", "Mobile WiMAX", "802.16d" and "802.16e." Clarification of the formal names are as follow:

  • 802.16-2004 is also known as 802.16d, which refers to the working party that has developed that standard. It is sometimes referred to as "Fixed WiMAX," since it has no support for mobility.
  • 802.16e-2005, often abbreviated to 802.16e, is an amendment to 802.16-2004. It introduced support for mobility, among other things and is therefore also known as "Mobile WiMAX".

Mobile WiMAX is the WiMAX incarnation that has the most commercial interest to date and is being actively deployed in many countries. Mobile WiMAX is also the basis of future revisions of WiMAX. As such, references to and comparisons with "WiMAX" in this Wikipedia article mean "Mobile WiMAX".

Uses
The bandwidth and range of WiMAX make it suitable for the following potential applications:

  • Providing portable mobile broadband connectivity across cities and countries through a variety of devices.
  • Providing a wireless alternative to cable and DSL for "last mile" broadband access.
  • Providing data, telecommunications (VoIP) and IPTV services (triple play).
  • Providing a source of Internet connectivity as part of a business continuity plan.


Broadband
Companies are deploying WiMAX to provide mobile broadband or at-home broadband connectivity across whole cities or countries. In many cases this has resulted in competition in markets which typically only had access to broadband through an existing incumbent DSL (or similar) operator.
Additionally, given the relatively low cost to deploy a WiMAX network (in comparison to GSM, DSL or Fiber-Optic), it is now possible to provide broadband in places where it might have been previously economically unviable.

Backhaul
WiMAX is a possible replacement candidate for cellular phone technologies such as GSM and CDMA, or can be used as an overlay to increase capacity. Fixed WiMAX is also considered as a wireless backhaul technology for 2G, 3G, and 4G networks in both developed and developing nations.
In North America, backhaul for urban cellular operations is typically provided via one or more copper wire line T1 connections, whereas remote cellular operations are sometimes backhauled via satellite. In most other regions, urban and rural backhaul is usually provided by microwave links. (The exception to this is where the network is operated by an incumbent with ready access to the copper network, in which case T1 lines may be used.) WiMAX is a broadband platform and as such has much more substantial backhaul bandwidth requirements than legacy cellular applications. Therefore, traditional copper wire line backhaul solutions are not appropriate. Consequently the use of wireless microwave backhaul is on the rise in North America and existing microwave backhaul links in all regions are being upgraded. Capacities of between 34 Mbit/s and 1 Gbit/s are routinely being deployed with latencies in the order of 1 ms. In many cases, operators are aggregating sites using wireless technology and then presenting traffic on to fiber networks where convenient.

Triple-play
WiMAX supports the technologies that make triple-play service offerings possible (such as Quality of Service and Multicasting).
On May 7, 2008 in the United States, Sprint Nextel, Google, Intel, Comcast, Bright House, and Time Warner announced a pooling of an average of 120 MHz of spectrum and merged with Clearwire to form a company which will take the name "Clear". The new company hopes to benefit from combined services offerings and network resources as a springboard past its competitors. The cable companies will provide media services to other partners while gaining access to the wireless network as a Mobile virtual network operator to provide triple-play services.
Some analysts have questioned how the deal will work out: Although fixed-mobile convergence has been a recognized factor in the industry, prior attempts to form partnerships among wireless and cable companies have generally failed to lead to significant benefits to the participants. Other analysts point out that as wireless progresses to higher bandwidth, it inevitably competes more directly with cable and DSL, inspiring competitors into collaboration. Also, as wireless broadband networks grow denser and usage habits shift, the need for increased backhaul and media service will accelerate, therefore the opportunity to leverage cable assets is expected to increase.

Rapid deployment
WiMAX access was used to assist with communications in Aceh, Indonesia, after the tsunami in December 2004. All communication infrastructure in the area, other than amateur radio, was destroyed, making the survivors unable to communicate with people outside the disaster area and vice versa. WiMAX provided broadband access that helped regenerate communication to and from Aceh.
WiMAX hardware was donated by Intel Corporation to assist the Federal Communications Commission (FCC) and FEMA in their communications efforts in the areas affected by Hurricane Katrina. In practice, volunteers used mainly self-healing mesh, Voice over Internet Protocol (VoIP), and a satellite uplink combined with Wi-Fi on the local link.